Safeguarded Processing of Sensor Data

M. Steindl', J. Mottok!, H. Meier!, F. Schiller?, M. Fruechtl?

'Regensburg University of Applied Sciences
Department of Electronics and Information Technology
Seybothstr. 2, D-93049 Regensburg, Germany
{michael.steindl; juergen.mottok; hans.meier}@e-technik.fh-regensburg.de

2Technical University Munich
Institute of Information Technology in Mechanical Engineering
Boltzmannstr. 15, D-85748 Garching near Munich, Germany
{schiller; fruechtl}@itm.tum.de

Abstract

The spectrum of software tasks no longer includes
only rare function controlling tasks for sensor actuator
chains in reactive embedded systems. However, more
and more responsible challenges like safety-critical
scenarios are tackled. Therefore sensor data have to
be safeguarded by several mechanism. An obvious
and widely used approach is the use of two redun-
dant hardware controllers, but this comes along with
an additional cost, space and energy factor. Another
way to fulfill certain safety properties is to implement
a second diverse software channel in a single micro-
controller architecture according the Safely Embedded
Software (SES) approach. However, a lack of perfor-
mance occurs by implementing this diverse channel
for complex computations e.g. floating-point opera-
tions. This paper gives an approach for transferring
the SES into a coprocessor and to migrate SES to a
flexible and powerful FPGA architecture.

Keywords: Safely Embedded Software, FPGA, Di-
verse Instructions, Safety Code Weaving

1 Introduction

The increasing functionality in automotive systems is
mostly realized by software. Those software is often
part of a sensor-actor chain, e.g. the break-by-wire
technology, and meets safety-relevant requirements in
many cases. As a consequence of this several measures
to ensure the right processing of sensor data have to be
taken. A widely used method to achieve both fail safe
and fail operational architectures is based on hardware
redundancy. However, this comes along with an addi-
tional cost, space and energy factor. With the Safely
Embedded Software (SES) approach diverse redun-
dancy could be created by software [4]. This approach
allows to detect both permanent and temporary errors
and due to this a suitable reaction (e.g. retry, recover,
fail safe state or fail operational) could be initiated.
Also SES is independent of specific hardware and spe-
cific operating systems which makes it more portable.

On the other side arithmetic coding mechanisms are
accompanied by larger data values and more complex
operations in the transformation domain, so the di-
verse software channel is the main time-consuming
factor in the system. This paper introduces a solution
to this matter by transferring the SES part to dedi-
cated hardware and continuous with a complete mi-
gration of the SES architecture to a FPGA, where mi-
crocontroller and SES-coprocessor are realized within
a single FPGA. The FPGA architecture also offers
benefits in sensor data conditioning. Modern sensors
often need special algorithms for signal conditioning
which need a lot of processing power if they must be
realized in software. In a FPGA architecture such
tasks could be easily realized in hardware and so the
performance of the system could be improved.

The following section gives an overview of the SES
approach, the performance is analyzed in section 3.
Section 4 describes the FPGA archtecture.

2 Safely Embedded Software (SES)

This Section gives an overview of the Safely Embed-
ded Software (SES) approach. Safety Code Weaving
is the procedure of adding a second software chan-
nel to an existing software channel. In this way, SES
adds a second channel of the transformed domain to
the software channel of the original domain. In ded-
icated nodes of the control flow graph, comparator
functionality is added. Though, the second channel
comprises diverse data, diverse instructions, compara-
tor and monitoring functionality. The comparator or
voter, respectively, on the same ECU has to be safe-
guarded with voter diversity [2] or other additional
diverse checks. Due to the safety code weaving, it is
possible to check the validity of data in a given granu-
larity. Based on this results, a dedicated fault reaction
is initiated to achieve a fail safe state. Some exam-
ples for possible fault reactions are backward recov-
ery, forward recovery, reset, consecutive calculation,
consecutive transmission (timing redundancy), retry,
substitute value, degradation of service (limp home)

processing in hardware / software domain

memory

variables

constants

1st channel (original domain)

transform
(edit time)

1

units

sensor
comparator

actuator

L mandatory
comp.
| unitn

coded
variables

coded

constant:

I L
s l

TP | coded

=

OP 2

> | coded
OPn |-e

memory

2nd channel (transformed domain)

Figure 1: Safe Sensor Data Processing

or shutdown.

Error detection techniques like ECC only check the
validity of data in the RAM/ROM area. With SES
it is possible to check the validity of data inside the
whole memory area, including cache and CPU regis-
ters (Figure 2).

Memory

REGISTER

CACHE

Safeguarded
by SES
Safeguarded

by ECC, RAM/ROM
etc...

Figure 2: Safeguarded Areas

2.1 Coding of Data

Safely Embedded Software is based on the (AN+B)-
code of the Coded Monoprocessor [1] transformation
of original integer data x; into diverse coded data ..

Definition 1 (Coded Data) Coded data is data
fulfilling the relation:

z. = Axxy+ B, + D
where xc,xy € Z, AeN*t, B,, D e Ny,

B, + D < A.

The prime number A [1, 12] determines impor-
tant safety characteristics like Hamming Distance and

residual error probability P = 1/A of the code. Num-
ber A has to be prime because in case of a sequence
of i faulty operations with constant offset f, the final
offset will be ¢ f. This offset is a multiple of a prime
number A if and only if ¢ or f is divisible by A. If A is
not a prime number then several factors of 7 and f may
cause multiples of A. The same holds for the multipli-
cation of two faulty operands. Additionally, so called
deterministic criteria like the above mentioned Ham-
ming Distance and the Arithmetic Distance verify the
choice of a prime number.

Other functional characteristics like necessary bit
field size etc. the handling of overflow are also caused
by the value of A. The simple transformation x. =
A x xy is illustrated in Fig. 3.

original % o X transformed
domain f © domain
0 0*A «—— valid
1 — B
valid - invalid
2 L
3 [1*A — vald
C invalid
;Z*A +— valid
L invalid
b ;3*A «— valid
L } invalid
Figure 3: Simple coding x. = Axzs from the original

into the transformation domain.

The static signature B, ensures the correct memory
addresses of variables by using the memory address
of the variable or any other variable specific number.
The dynamic signature D ensures that the variable is
used in the correct task cycle. The determination of

the dynamic signature depends on the used scheduling
scheme. It can be calculated by a clocked counter or
it is offered directly by the task scheduler.

The instructions are coded in that way, that at the
end of each cycle (i. e. before the output starts) either
a comparator verifies the diverse channel results z, =
Ax zf + B, 4+ D?, or the coded channel is checked
directly by the verification condition (z.—B,—D) mod
A =07 (cf. Definition 1).

2.2 Coding of Operations

A complete set of arithmetic and logical operators in
the transformed domain can be derived. The trans-
formation in Definition 1 is used.

Definition 2 (Coded Operators) A coded opera-
tor OP. is an operator in the transformed domain that
corresponds to an operator OP in the original domain.
Its application to uncoded values provides coded values
as results that are equal to those received by trans-
forming the result from the original domain after the
application OP for the original values. The formalism
is defined, such that the following statement is correct
forall x¢, ys from the original domain and all z., y.
from the transformed domain, where x. = o(xy) and
Ye =0 (yyr) is valid:

Ty O—@ I,

Yr O—® Ye

zy O—e 2z

zg =x5 OPys ze = 2. OP. y, (1)

Accordingly, the unary operators are noted as:

zp =0Py; o—e 2.=0P.y. (2)
In the following, the derivation steps for the in-

teger addition and integer subtraction operation are
explained exemplarily.

2.2.1 Coding of integer Addition

The addition is the simplest operation of the four basic
arithmetic operations. Defining a coded operator (see
Definition 2), the coded operation @ is formalized as
follows:

Zf =T¢ + Yy o—e Ze = Te D Ye (3)

Starting with the addition in the original domain
and applying the formula for the inverse transforma-
tion, the following equation can be obtained for z.
using 1:

2f =Xy + Yy
2c—B.-D x.—B,—D y.—B,—D
A o A A

%—B.,—-D=1,—By,—D+y.—B,—D
2e=%c— By —D+y.—By+ B,
Zc:xc+yc+(Bz_Bz_By)_D (4)

—_————
const.
The equations (3) and (4) state two different repre-

sentations of z.. A comparison leads immediately to
the definition of the coded addition &:

Definition 3 (Coded Addition @)

Ze = X D Ye
= 2.+y.+(B,—B,—B,)—D

2.2.2 Coding of integer Subtraction

In analogy to the addition in Section 2.2.1, the coded
operation © can be formalized as follows:

zp=xp—yr Oo—® z.=x.0¥y (5
Applying the formula for the inverse transforma-

tion, the following equation can be obtained for z.:

Rf =Xf —Yr
zC—BZ—D_xC—BI—Din—By—D
A B A A

2c—B,—-D=2,—B;—D—y.+By,+D
Zc:xc_yc+(Bz+By_B:c)+D (6)
~——_—
const.

According to this equation, the coded subtraction
© can be defined as follows:

Definition 4 (Coded Subtraction &)

Ze = Te O Ye

On basis of this procedure, other arithmetic oper-
ations like multiplication and division can be formal-
ized.

2.2.3 Coded Floating-Point Operations

Additionally to the coded integer operations coded
floating-point operations could be formulated. Finite
floating-point numbers are internally represented by a
dataset containing sign, exponent and the fraction. A
single (32 Bit) floating-point number is encoded by a
1-bit sign s, an 8-bit exponent e and a 23-bit fraction
f, as shown in Table 1.

For a proper transformation of floating-point num-
bers into the transformed domain the dataset is trans-
formed separately. So each part of the dataset (sign,

1 8 23
’ S \ Exponent \ Fraction ‘
31 0

Table 1: Representation of 32-bit IEEE 754 single
floating-point number

exponent, fraction) is treated as integer and trans-
formed under the rules shown in section 2.1.

Coded floating-point operations are also based on
the coded integer operations (section 2.2.1, 2.2.2), so
the parts of the floating-point dataset are processed
separately with the coded integer operations.

3 Performance Analysis

In this Section, the performance of the coded addition
is discussed. In addition to the coded integer addition,
the coded floating-point addition is introduced. This
floating-point addition in the transformed domain is
based on coded integer addition with separating man-
tissa, exponent and sign. For a better comparison
between the performance of floating-point additions
in the original and the transformed domain, the cal-
culations in the original domain are completely emu-
lated in software and no internal compiler library is
used. The calculations in the transformed domain are
completely handled in software following the SES ap-
proach.

All measurements are done on an Infineon
XC167CI-32F40F BB-A(XC167) microcontroller.
This 16-bit controller is broadly used in the auto-
motive industry. For clock frequency, 20 MHz were
selected and the Keil Vision3 v3.53 C-Compiler
without optimizations is used.

As shown in Figure 4(a), the coded integer addition
on the XC167 microcontroller is only about 3.5 times
slower than the addition in the original domain. How-
ever, the corresponding floating-point addition (Fig-
ure 4(b)) is about 10 times slower. As mentioned
above, the floating-point addition in the original do-
main is emulated in software, so that the difference
to a calculation with a hardware floating-point unit
(FPU) would be much higher. The mentioned integer
addition as well as the floating-point addition are the
easiest operations in the transformed domain. It is ex-
pected that for other arithmetic operations like mul-
tiplication or division the difference in performance
between original and transformed domain is rising, es-
pecially for coded floating-point operations.

Due to this, SES could lead to a growing demand
for performance if e.g floating-point operations should
be safeguarded.

4 SES-Coprocessor

A possible option to raise the performance is to source
out the SES part of the microcontroller by applying a
SES-coprocessor.

4.1 External coprocessor approach

The SES-coprocessor connected to the microcontroller
(Figure 5) contains a coded arithmetic logic unit
(ALU,.) for integer and (if needed) floating-point
arithmetic. The communication path between micro-
controller and SES-coprocessor has to be safeguarded.
This ALU,. could be completely realized in hardware,
so a complex programmable logic device (CPLD) or
a field programmable gate array (FPGA) would be
a proper platform for the SES-coprocessor. If a large
number of units is expected, an application specific
integrated circuit (ASIC) is a possible alternative.

=

=

microcontroller

sensor
actuator

SES
coprocessor

* 2. Channel (diverse)

|::> 1. Channel

Figure 5: Microcontroller with a SES-Coprocessor.
The interconnection between microcontroller and co-
processor could be realized by port- or memory map-
ping, also serial connections (CAN, I?C, etc.) are
possible.

4.2 Hardware implementation of coded
addition

This Section describes the realization of the coded in-
teger addition in hardware.

Based on the definition of the coded integer addition
(Section 2.2.1)

Zc:xc+yc+(Bz_Bw_By)_D (7)
N——
const.

a simple hardware model could be created.

The coded ALU, for integer-addition is shown in
Figure 6 and consists of 2 adders and 3 subtracters in
a serial alignment.

Overflow handling is not explicitly mentioned in
this paper. Due to the concurrent logic approach of
this model, the execution time of a coded addition
only depends on the propagation delay of the gates,
as there is no dependency on the clock frequency
(of course, the propagation delay affects the clock
frequency on the whole design). If we assume that

Additions per second

900
800
2
g 700
Q
® 600
[
o 500
o
2 400
g
g 300
(@)
o, 200
—
100
0

original operation coded operation

(a) integer additions per second

Additions per second

35
- 30
j o
3
g 25
@

o 20

g

= 15

@

& 10

o«

o

A 5
0

original operation coded operation

(b) floating-point additions per second

Figure 4: Performance of integer and floating-point additions in the original and coded domain on Infineon

XC167CI-32F40F BB-A microcontroller

Zc

Figure 6: Structure of a coded ALU for coded integer-
addition

the propagation delay of an adder/subtracter would
be about 6ns, the calculation of a coded addition
could be finished in about 30ns.

In a next step, this design could be optimized. A
main advantage of a hardware implementation in com-
parison to software is the possibility to parallelize op-
erations. The equation 7 could be rearranged as fol-
lows:

ze = (Tc+ye+B:) = (Bo + By + D) (8)

Based on the equation 8 we could modify the hard-
ware model in the following way.

Figure 7 shows an optimized hardware model for
a coded integer addition. In contrast to Figure 6,
this ALU consists of 4 adders and 1 subtracter, two
additions are done parallel in stage 1 and 2. Due to
this, the calculation time of the coded addition is
reduced to 18ns in this way.

With this SES-coprocessor approach, the perfor-
mance of the system could be increased, but on the
other hand additional hardware is needed.

el

Figure 7: Structure of a optimized coded ALU for
integer-addition

4.3 Migration to a FPGA architecture

FPGAs allow a flexible, low-cost solution for control
functions, bridging an interface between components
or simply as glue logic for a variety of customized sys-
tems. Multiple functions could be integrated into a
single-chip solution to reduce board space and costs
[3]. Many FPGA vendors provide powerful microcon-
troller soft cores (Table 2. So it would be obvious to
integrate the microcontroller and the SES-coprocessor
onto a single FPGA.

4.3.1 Single core processor with SES

State of the art FPGAs contain either hardwired mi-

crocontrollers (e.g. Xilinx Virtex 4) or a microcon-
troller soft core could be implemented.

Figure 8 shows a FPGA including a microcontroller
soft core and a SES-coprocessor. The SES-coprocessor
is reconfigurable and contains the operations defined
in the SES approach needed by the application. An in-
creasing number of microcontroller soft cores is avail-
able, so there is a suitable device for many applica-

E> oA [e E> i
<] g
@ ©
= =]
8 i N g
3’”””‘ Ke T >
ﬁ> 1. Channel [2. Channel (diverse)

Figure 8: FPGA including microcontroller soft core
and SES-coprocessor

tions. Table 2 illustrates a few examples (list is not
exhaustive). Of course, a proprietary solution is also
possible.

Type Name Vendor

8-Bit PicoBlaze Xilinx

16-Bit Nios II Altera

32-Bit Leon Gaisler Research
32-Bit MicroBlaze Xilinx

Table 2: common microcontroller soft cores

This approach offers a couple of advantages:

e modular microcontroller concept - several micro-
controller could be used on the same FPGA, so
the microcontroller could be upgraded quickly
due to modified requirements without changing
any hardware components.

e modular SES-coprocessor concept - the SES-
coprocessor could be easily adapted to the de-
sired application, for instance only coded inte-
ger arithmetic could be installed or, if needed,
coded floating-point arithmetic could also be im-
plemented.

e concept verification with fault injection strategies
(stimulated bit flips) in the soft core divider.

e automatic regression tests are also possible as
needed for a safety assessment of the SES FPGA.

4.3.2 Multi core processor with SES

For higher SIL demands, this approach could be
easily expanded by adding a traditional redundant
hardware channel.

The approach described in figure 9 uses the exist-
ing know-how in redundant hardware design. The two
microcontrollers have not necessarily be equal in this
concept, two different soft cores can be implemented
to reduce common cause failures. In this way, diverse
hardware channels are achieved. This is a main ad-
vantage against a classical dual core processor, the
two cores are mostly identical here. Although the

FPGA
Channel 1 Channel 2

.
- SES; SES, S
<} 5}
2 2
N N 3]
7 J U N I S | N TN B . ®

>

””””” uCy 1o} Ty S

|:: > 1. Channel > 2. Channel (diverse)

Figure 9: FPGA including dual microcontroller soft
core and SES-coprocessor in a redundant hardware
approach

SES-coprocessors could be different, alternative safety
concepts e.g. ECC or Hamming-Code could be im-
plemented. According to requirements the number
and type of cores could be changed without chang-
ing any component. The voting technique for both
channels is based on the normative regulations given
in IEC61508[10] and ISO/CD 26262[11].

4.3.3 Further options to increase the perfor-
mance

Some sensors need a special and complex signal
conditioning which may consume a lot of processing
power if it must be realized in software. Modern FP-
GAs can hold more than one single microcontroller
soft core and a SES-coprocessor, so dedicated digi-
tal hardware for signal conditioning could be easily
implemented too. Also coprocessors for other special

applications could be added.

FPGA

sensor
actuator

|::> 1. Channel . 2. Channel (diverse)

Figure 10: FPGA including microcontroller soft core,
SES-coprocessor and several coprocessors for individ-
ual tasks

In Figure 10, an alternative for increasing the per-
formance of an embedded system based on a FPGA
is shown. The microcontroller SES-coprocessor ap-
proach discussed above is expanded by several copro-
cessors for individual tasks.

Some examples for such tasks:

e signal conditioning (digital filters),
o fast signal processing (DCT, DFT,...),

e fast arithmetic calculations (e.g. multiplications
with high bit width),

e decoders or
e multiplexers

Also external digital hardware components could
be reduced by including them into a FPGA. So this
approach increases performance, fulfills safety require-
ments with the SES approach and reduces the amount
of hardware components.

5 Intelligent Sensors

A weak point concerning safety sensor data process-
ing is the interconnection between sensor and host.
Nowadays many sensors have a digital interface, in
many case they can be directly connected to a bus
system like LIN, I2C or CAN. Such a sensor com-
prises typically a microcontroller which is responsible
for signal conditioning and connectivity. Considering
the limited output range of a sensor a tailored SES
unit could be implemented on this microcontroller too
(Figure 11).

sensor 1 FPGA SES
y
measurand ——— — SES
uc <
sensor 2 LIN, CAN,
12C,...
measurand —— — SES

|
|
:
|
|
Figure 11: Intelligent Sensors with SES

This SES unit safeguards the transmission from
sensor to host. For higher SIL demands the protocol
could be extended by a message counter and a time
counter.

6 Hardware - Software Codesign

Choosing a FPGA architecture including microcon-
troller and SES cores also affects the design method-
ology of the system. The possibility for hardware
- software codesign allows the cooperative and con-
current development of hardware and software (co-
specification, co-development, and co-verification) in
order to achieve shared functionality and performance
goals for a combined system [5], [6]. In this way, the
decision if a task should be realized in software or in
hardware could be changed rapidly. Special sensor
signal conditioning tasks could be either realized in
software or in hardware (or any combination of that)

without changing any hardware component. In a clas-
sic microcontroller design such a decision leads to an
expensive and complicated design modification. Also
the parallelization of hard and software design reduces
costs of development and the time to market.

7 Conclusion and Outlook

The FPGA approach presented in this paper offers
considerable advantages. On the one hand the per-
formance of SES guided systems could be improved
by sourcing the SES part out into a dedicated hard-
ware. For this only a low density FPGA is neces-
sary and possibly existing system could be retained.
The fast growing performance of FPGAs allows on
the other hand a complete integration of microcon-
troller and SES-coprocessor into a single component.
Also specialized coprocessors for signal conditioning
of sensor data or other individual tasks could be in-
tegrated. This leads to increased performance and a
flexible approach for safety embedded systems. If the
design methodology is adapted too, also economic ad-
vantages are possible.

References

[1] Forin, P.: Vital Coded Microprocessor Princi-
ples and Application for Various Transit Sys-
tems. IFAC Control, Computers, Communica-
tions, Paris, pp. 79-84, 1989.

[2] Ehrenberger W.: Software-Verifikation. Hanser,
Munich, 2002.

[3] Actel Corporation: Reliability Considerations
for Automotive FPGAs. white paper, September
2003

[4] Mottok, J., Schiller, F., Zeitler, T.: Safely Em-
bedded Software for State Machines in Auto-
motive Applications, SAFECOMP 2007, LNCS
4680, pp. 283288, 2007

[5] Gupta, R., De Micheli, G.: Hardware-Software
Cosynthesis for Digital Systems IEEE Design &
Test of Computers, September 1993, pp. 29-41.

[6] Mahr, T., Gessler, R.. Hardware-Software-
Codesign Vieweg, Wiesbaden 2007

[7] Steindl, M., Mottok, J., Meier, H., Schiller,
F., Fruechtl., M.: Migration of Safely Embed-
ded Software to FPGA Based Architectural Con-
cepts. to be published in Softwaretechnik-Trends,
2009

[8] Brignell, J., White, N.: Intelligent Sensor Sys-
tems Institute of Physics Publishing, 1996

[9] Mottok, J., Schiller, F., Voelkl, T., Zeitler,
T.. Computer Safety, Reliability, and Secu-
rity 26th International Conference, SAFECOMP

[10]

2007, Proceedings, LNCS 4680; Springer-Verlag
GmbH; S. 283-288;

International Electrotechnical =~ Commission
(IEC): Functional Safety of Electrical / Elec-
tronic / Programmable Electronic Safety-Related
Systems. 1998.

ISO/CD 26262 International Organization for
Standardization Road vehicles Functional safety
actually committee draft

Ozello, P.: The Coded Microprocessor Certifi-
cation. International Conference on Computer
Safety, Reliability and Security, SAFECOMP
1992, Springer, Munich, pp.185-190, 1992.

